Breakthrough may clear major hurdle for quantum computers

The potential of quantum computers is currently thwarted by a trade-off problem. Quantum systems that can carry out complex operations are less tolerant to errors and noise, while systems that are more protected against noise are harder and slower to compute with. Now a research team from Chalmers University of Technology has created a unique system that combats the dilemma, thus paving the way for longer computation time and more robust quantum computers. 

Quantum force used to generate colours on a tiny scale

Researchers at Chalmers University of Technology have discovered a way to observe a quantum force – the Casimir force – in real-time under the microscope by using a simple setup of miniscule gold flakes in a salty aqueous solution. Additionally, beautiful colours emerge from the resonances created between the aligned gold flakes, and the researchers can control the colours simply by adding or removing salt. 

Breakthrough paves the way for next generation of vision implants

A group of researchers from Chalmers University of Technology in Sweden, University of Freiburg and the Netherlands Institute for Neuroscience have created an exceptionally small implant, with electrodes the size of a single neuron that can also remain intact in the body over time – a unique combination that holds promise for future vision implants for the blind.

Quantum challenge to be solved one mile underground

Radiation from space is a challenge for quantum computers as their computation time becomes limited by cosmic rays. Researchers from Chalmers University of Technology, Sweden, and University of Waterloo in Canada are now going deep underground in the search for a solution to this problem – in a two-kilometer-deep mine.

Grand slam for MC2 as Wallenberg Scholars 2024 are appointed

Floriana Lombardi, Peter Andrekson and Per Delsing, all active at MC2, are three of the eleven Chalmers researchers who will be appointed Wallenberg Scholars in 2024. With the grants from the Knut and Alice Wallenberg Foundation, they may now push the borders of knowledge in high-temperature superconductors, space communication and qubits with longer coherence times. 

Semiconductor research receives prestigious ERC grant

Three researchers from Swedish universities were awarded the prestigious ERC Advanced grant for research in Physical Sciences and Engineering. One of these is Jan Stake, Professor of Terahertz Electronics at the Department of Microtechnology and Nanoscience. As the only researcher from Chalmers to be given the grant, he now receives approximately SEK 28 million for his research project in semiconductor technology.

Great interest from the industry at WACQT workshop

An impressive number of actors from the industry attended WACQT's workshop to learn more about how the center’s quantum research is now being put to concrete use in an increasing number of areas. “It is good for us to see all the work that is going on within WACQT and to be updated on the progress, but also to understand which use cases that others in the industry are working on and which could be relevant to us as well,” says Maria Stranne from SKF, one of many curious business representatives present.

Quantum Testbed now open to WACQT partners and researchers

Chalmers Next Labs announces the opening of the Quantum Testbed, offering support with quantum technologies, for WACQT partners and researchers. The testbed will offer access to state of the art resources for both quantum hardware and quantum software testing. Following the agreement signed with IBM in January 2024, IBM’s top-of-the-line quantum computers are now also made accessible to WACQT collaborators.

2DSPIN-TECH: a game changer for future computer memory

By harnessing the features of several new two-dimensional quantum materials, researchers within the EU project 2DSPIN-TECH wish to pave the way for significantly faster and more energy-efficient computer memories. “This is crucial for the future use of information technology," says Saroj Dash, coordinator of 2DSPIN-TECH.

A “quantum leap” at room temperature

In the realm of quantum mechanics, the ability to observe and control quantum phenomena at room temperature has long been elusive, especially on a large or “macroscopic” scale. Researchers at École Polytechnique Fédérale de Lausanne, EPFL - including Nils Johan Engelsen who is currently active at Quantum Technology at Chalmers University of Technology - have achieved a milestone by controlling quantum phenomena at room temperature.

Launch of WiTECH - A milestone for wireless and semiconductor innovation

WiTECH, Wireless Infrastructure Technology at Chalmers, organises a full day for its partners to present research projects and discuss long-term strategy for the centre.  The newly established WiTECH competence centre, hosted by the Department of Electrical Engineering (E2) in close collaboration with the Department of Microtechnology and Nanoscience (MC2), intends to be a key player in creating a sustainable future.